In the york building and york crime context, writing
nearest(york_crime,york)
reads as "find the nearest crime in york to
each building in york, and returns a dataframe with every building in
york, the nearest york_crime to each building, and the distance in
metres between the two."
coverage(nearest_df, to_df, distance_cutoff = 100, ...)
nearest_df | dataframe containing latitude and longitude |
---|---|
to_df | dataframe containing latitude and longitude |
distance_cutoff | integer the distance threshold you are interested in assessing coverage at |
... | extra arguments to pass to nearest |
a dataframe containing information about the distance threshold uses (distance_within), the number of events covered and not covered (n_cov, n_not_cov), the percentage covered and not covered (pct_cov, pct_not_cov), and the average distance and sd distance.
library(dplyr)#> #>#>#> #>#>#> #>#>#> #># already existing locations york_selected <- york %>% filter(grade == "I") # proposed locations york_unselected <- york %>% filter(grade != "I") coverage(york_selected, york_crime)#> # A tibble: 1 x 7 #> distance_within n_cov n_not_cov prop_cov prop_not_cov dist_avg dist_sd #> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> #> 1 100 339 1475 0.187 0.813 1400. 1597.coverage(york_crime, york_selected)#> # A tibble: 1 x 7 #> distance_within n_cov n_not_cov prop_cov prop_not_cov dist_avg dist_sd #> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> #> 1 100 54 17 0.761 0.239 120. 247.